

The goal is to learn to solve more complex problems by breaking them down into parts (objects) and with logical thinking to learn the basic steps of programming, construction and robotics.

Content:

Tablet 1
Robot car 2
Assembling a program on a tablet 3
Stopping and deleting the programs 4
Example 1 - MAIN PROGRAM - LED light 5
Example 2 - MAIN PROGRAM - LED light endlessly 6
Example 3 - car bumper - red sensor
Example 4 - car bumper - green sensor 8
Example 5 - car bumper - both sensors
Example 6 - car bumper - both sensors simultaneously 10
Example 7 - car bumper - sensors combined 11
Example 8 - MAIN PROGRAM + SUBPROGRAMS 12
Example 9 - LED lights 13
Example 10 - LED lights - endlessly14
Example 11 - LED lights - ADVANCED 15
Example 12 - robotic car movement control
Example 13 - robotic car movement control 17
Example 14 - robotic car movement control - ADVANCED
Example 15 - robotic car avoids obstacles
Example 16 - robotic car avoids obstacles - ADVANCED 20
Example 17 - IR sensors - EYES on the bottom of the vehicle 21
Example 18 - IR sensors - EYES on the bottom of the vehicle 22
Example 19 - the robotic car follows the line
Example 20 - the robotic car is looking for an exit
Example 21 - the robotic car is looking for an exit - ADVANCED 25
Example 22 - we mix colors of the LED lights
GROUP 1 - for vehicle movement control and other
command cubes
GROUP 2 - for lights and sensors

ProgBlox Car set

Robot car

Open the battery compartment of the robotic car and place the batteries in the compartment.

To turn ON the robotic car, press the right button (the blue light will flash briefly).

To turn OFF the robotic car, press the right button until the blue light goes out (about 6 seconds).

If the robotic car is not used for more than 15 minutes, it will turn itself OFF.

Assembling a program on a tablet

To control the robotic car, we combine two types of programs: **Main program**:

- cannot contain command cubes for sensor control (INPUTS)
- can be run once or repeated indefinitely

Subprograms:

- for bumper sensors or IR sensors programs according to the state of the sensor
- the program has a command cube at the beginning for bumper sensors or IR sensors
- the program is started according to the change of the state of the sensor (bumper or IR)

MULTIPLE subprograms can be assembled on the tablet at the same time (according to the state of the sensor), but ONLY ONE main program.

After the program or subprogram has been assembled, it is necessary to press the RUN button on the tablet to activate it. The blue LED light on the car will signal that the program is on loaded into the car's memory, and started.

The programs remain in the car's memory until the vehicle is turned OFF, or the programs are deleted.

Stopping and deleting the programs

Deleting all programs and stopping work, can be done in two ways:

- By pressing the left button on the robotic car (the red LED will light up), and the programs will be deleted from the car's memory
- by selecting the command cube

and pressing the RUN button.

ProgBlox Car set

Example 1 - MAIN PROGRAM - LED light

wait a moment (1 sec.)

turn off the red LED light

press the RUN button on the tablet

The LED on the robotic car will short light up with BLUE light (the program is started), then it will light up RED LED light. One second later it will shut down.

LED light

Example 2 - MAIN PROGRAM - LED light endlessly

turn on the red LED light

wait a moment (1 sec.)

turn off the red LED light

wait a moment (1 sec.)

repeat the program endlessly

press the RUN button on the tablet

The LED on the robotic cart will briefly light up with BLUE light (the program is running), and then the RED LED light will turn on and off endlessly every second.

LED light

Example 3 - SUBPROGRAM - car bumper - red sensor

pressure on the red side of the bumper

turn on the red LED light

wait a moment (1 sec.)

turn off the red LED light

Example 4 - SUBPROGRAM - car bumper - green sensor

turn on the green LED light

wait a moment (1 sec.)

turn off the green LED light

Example 5 - SUBPROGRAMS - car bumper both sensors

pressing the red side of the bumper turns on the red LED light for one second

pressing the green side of the bumper turns on the green LED light for one second

0

0

USB 5V

ProgBlox

didacta.hr

OFF

ON

power 😑 signal 📀

charge 🗆 full 🗌

Example 6 - SUBPROGRAMS - car bumper both sensors simultaneously

red

sensor

pressing the red and green side of the bumper simultaneously turns on the blue LED light

the bumper is not pressed, the blue LED light turns off

0

Example 7 - SUBPROGRAMS - car bumper sensors combined

pressing the red side of the bumper turns on the red LED light

pressing the green side of the bumper turns on the green LED light

pressing the red and green side of the bumper simultaneously turns on the blue LED light

the bumper is not pressed, the blue LED light turns off

sensors on the bumper

Example 8 - MAIN PROGRAM + SUBPROGRAMS

REMOVE THE CUBE

, WHAT COLOR THE LED LIGHT WILL BE NOW ?

ProgBlox Car set

Example 9 - LED LIGHTS

Example 10 - LED LIGHTS - ENDLESSLY

Example 11 - LED LIGHTS - ADVANCED

THE ROBOTIC CAR DECIDES WHICH LED LIGHT SHOULD ILLUMINATE, RED OR GREEN

Example 12 - robotic car movement control

- drive long forward
- rotate the vehicle to the right completely
- drive long forward

ProgBlox Car set

Example 13 - robotic car movement control

- drive long forward
- rotate the vehicle halfway to the right
- drive long forward
- rotate the vehicle halfway to the right
- drive long forward

ProgBlox Car set

Example 14 - robotic car movement control - ADVANCED

Example 15 - ROBOTIC CAR AVOIDS OBSTACLES

Example 16 - ROBOTIC CAR AVOIDS OBSTACLES - ADVANCED

the bumper is not presseddrive a short forward (subprogram 1)

the green side of the bumper is pressed - drive a short backwards and rotate the vehicle halfway to the left or right (subroutine 2)

the red side of the bumper is pressed - drive a short backwards and rotate the vehicle halfway to the left or right (subroutine 3)

USB 5V

Example 17 - IR sensors - EYES on the bottom of the vehicle

- test the operation of the program by moving the robotic car above the black line

subprogram 1

when the yellow eye is above the white background

turn on the yellow LED light

subprogram 2

when the yellow eye is above the black background (line)

turn off the yellow

0

charge 🗆 full ProgBlox didacta.hr 0 OFF ON idower 😑 sianal 🔿 ο

0

to the other

Example 18 - IR sensors - EYES on the bottom of the vehicle

ProgBlox Car set

Example 19 - THE ROBOTIC CAR FOLLOWS THE LINE

Example 20 - THE VEHICLE IS LOOKING FOR AN EXIT

Example 21 - THE VEHICLE IS LOOKING FOR AN EXIT - ADVANCED

THE ROBOTIC CAR DECIDES ON THE DIRECTION OF TURN

Run (separately) as the main program

Example 22 - WE MIX COLORS OF LED LIGHTS

An LED light can display different colors of light

To get a bright PINK color, we have to turn it on BLUE and RED light

For the TURQUOISE color of the light, we have to turn it on BLUE and GREEN light

TRY OTHER COMBINATIONS

Command cubes

ProgBlox Car set

GROUP 1 - for vehicle movement control and other command cubes

3 X

3 X

2×

2 x

decide - command cube first or second in sequence

- 3 x <
- rotate the vehicle to the right side in half

rotate the vehicle

to the left side in half

drive in the forward direction for a long

drive in the direction back long

rotate the car to the right completely

rotate the car to the left completely

rotate the vehicle to the right a little

rotate the vehicle to the left a little

drive in the forward direction for a short

drive in the direction back short

2 🛛

NOT USED FOR SUBPROGRAMS

Command cubes

GROUP 2 - for lights and sensors

turn on the red LED light
turn on the green LED light
turn on the yellow LED light
turn on the blue LED light
turn off the red LED light
turn off the green LED light
turn off the yellow LED light
turn off the blue LED light

the red side of the bumper is pressed

the green side of the bumper is pressed

2×

2 🛛

2 🛛

2 🛛

the yellow (EYE) IR sensor is over the white background

the blue (EYE) IR sensor is over the white background

the red side of the bumper is not pressed

the green side of the bumper is not pressed

the yellow (EYE) IR sensor is over the black background

the blue (EYE) IR sensor is over the black background

command blocks to control the bumper and IR sensor CANNOT be used in the main program

TRAVNIČKA 18, 40000 ČAKOVEC, CROATIA (EU)

