
m
ic

ro
:b

it
 A

D
 B

W

MakeCode programming

DIDACTA ADVANCE d.o.o.
Čakovec, Croatia (EU)
www.didacta.hr

micro:bit AD BW - MakeCode programming

1. BEGINNING

1.1. Connecting micro:bit and AD interface with screws

1.2. Power supply of micro:bit and AD interface via battery, adapter or USB port

1

We use smaller screws in positions where damage could occur elements on
the micro: bit board, which are located near the connection opening.

properly connected
interfaces:
micro:bit is from below
side tiles AD BW
interfaces

for merging we use
two types of screws
3mm and 4mm
in the schedule
shown
in the picture

screw 4mm with
semicircular
cap

srew 3mm
screw 3mm

screw 4mm

interface power supply
and micro: bits via USB
connectors:
connect the USB cable to
USB computer connector,
or connect the adapter to
power supply (5V)

interface power supply
and micro: bits via
9V batteries:
connect the connector
wires to battery into the
connector on interface
(note on polarity)

RESET
switch

on touch sensors
(4mm) mount
semicircular caps

switch (2) for
battery powered

power switch (1)
via adapter / USB

connect the USB cable
(for programming)
with a computer

1.3. Interface launch

1.4. Interface screen
The micro: bit AD BW interface has a black and white screen with a graphic resolution of 48 x 84 pixels
(Figure 2).

After startup, the text shown in Figure 1 will be displayed on the micro:bit AD BW interface screen.
The interface is ready to work.
If the program is already loaded in micro:bit, you need to press the RESET button on the micro:bit,
to start program.

Graphic functions use graphic resolution (line, circle, rectangle, ...), and text mode is used in
standard text printing (not graphic) and when defining the game screen, and positioning the player object.

A resolution corresponding to the font size is used to print the text (text mode). Standard size
text character (font font is 7 x 5 pixels) is 8 x 6 pixels with space pixels. That is why it is a resolution
to print 6 x 14 characters (Figure 3). When creating a program, we must take into account which program commands
we also use which mode of operation they are intended for.

2

Figure 2. Graphics mode - resolution 48 x 84.

Figure 3. Text mode - 6 x 14 resolution.

Figure 1.

0y

1

2

3

4

5

5

0

x

0

47
47

0

83

83
y

x

1 2 3 4 5 6 7 8 9 10 11 12 13

13

micro:bit AD BW - MakeCode programming

2.1. Launching the library programming and loading interface

Run the MakeCode programming interface in your internet explorer (link):

https://makecode.microbit.org/#editor

Download the library for the micro:bit AD interface:

https://github.com/didacta-advance/ADbw

Click setup (), and then select Extensions.

Enter the address of the library.

3

2. MAKECODE INTERFACE AND LIBRARY

Figure 5. Select Extensions - to enter the library address

Figure 6. Entering the library address (the screen may look different)

Figure 4. Makecode home screen interface

micro:bit AD BW - MakeCode programming

4

Figure 7. Selected library

Figure 8. Library in the makecode interface menu

Figure 9. RESET PROGRAM function

Figure 10. TEXT function (text mode)

Figure 11. HELLO text printing program

Click on the displaylib library window to start loading (Figure 7).

After loading the library, the name of the Display library should appear in the menu (Figure 8).

In the first program we use the TEXT function (Figure 9).

At the beginning of each program it is good to use the RESET PROGRAM function which deletes the values
that is program micro:bit AD used in previous work of the program on micro:bit.

We insert the TEXT function into the already existing program block on start which is located on the working
surface of the interface. In the field ‘’ ‘’ enter the text HELLO and the print position (x, y) on the screen (text
mode) according to the example in Figure 11. Load program in micro:bit via the DOWNLOAD command. The
text HELLO in position should be displayed on the screen entered values (Figure 12).

3.1. First program - text printing "HELLO" - TEXT function

3. PROGRAMMING - BASIC FUNCTIONS

micro:bit AD BW - MakeCode programming - BASIC FUNCTIONS

3

Print on the screen after starting the first program Figure 12.

By entering a value of 2 or 3 in the size field, you can print text larger than the standard dimension (Figure 13).

In this program we use the repeat function and the variable brojac that we use as y
value in the TEXT function.

5

Figure 12. Print on the screen

Figure 13. Print on the screen

Figure 15. Print the previous program

Figure 14. Multiple text printing

3.2. Multiple text printing via the repeat function

0y

1

2

3

4

5

5

0

x

1 2 3 4 5 6 7 8 9 10 11 12 13

13

0y

1

2

3

4

5

5

0

x

1 2 3 4 5 6 7 8 9 10 11 12 13

13

micro:bit AD BW - MakeCode programming - BASIC FUNCTIONS

6

Figure 16. CLEAR SCREEN function - clears the screen

Figure 17. HELLO text printing program in two positions

Figure 18. HELLO text printing program in two positions

In this program we use the TEXT function and the CLEAR SCREEN function (Figure 15).

In the on start block, leave the RESET PROGRAM function.

Move the TEXT function to the forever block and enter the values according to the example. After the first
functions add a half-second pause (500 ms). Repeat this one more time and enter other values
into a new function, according to the example in Figure 15.

Add the CLEAR SCREEN function to the program and load the program.

What is the difference between the display on the screen ?

Remove the CLEAR SCREEN function from the program. Enter the same values for the position in both TEXT
functions, and change the print color to another function.

What is the result of this change ?

3.3. Print text in two positions and clear the screen

micro:bit AD BW - MakeCode programming - BASIC FUNCTIONS

7

Figure 21. Example a program for printing a single line of text in graphic mode

Figure 22. Example a program for printing multiple lines of text in graphic mode

Figure 23. Example a program for printing multiple lines of text in graphic mode

An example of a program that prints numeric values at a specific position using the TEXT function.

Figure 19. CLEAR SCREEN function - clears the screen

Figure 20. Function to print auxiliary memory on the screen

In this program we use the TEXT function to print text in graphic resolution (graphic mode Figure 2.).
With this function we can print text at any position on the screen.

This function does not print text directly on the screen but in the BUFFER (auxiliary memory), so after one or
more The TEXT (Graphics) function must be executed by the SHOW: buffer function which displays a record
from the auxiliary memory on the screen.

3.4. Print text in graphic mode

micro:bit AD BW - MakeCode programming - BASIC FUNCTIONS

8

In this program, we use the LINE function to draw a line on the screen in graphics mode. We need to specify
the start point (x1, y1) and end (x2, y2) point of line, on the screen. We can draw the line in black or white
color. If we want to delete an already drawn black line, we need to draw a white line in the same position.

Give it a try!

3.5. Drawing a line

Figure 24. Drawing a line in black

Figure 25. Drawing multiple lines in black

Figure 26. Draw multiple lines in black using the PICK RANDOM function

micro:bit AD BW - MakeCode programming - BASIC FUNCTIONS

The circle or filled circle is not the correct shape because of the screen resolution.

In these examples, we use the CIRCLE function to draw a circle, in graphical mode. At the circle we need to
determine the position of the center (x, y) of the circle on the screen and the radius. We can draw a circle in
black or white color. If we want to delete an already drawn black circle, we need to draw a circle at the same
position in white color. To draw a filled circle, we use the color filled.

Give it a try!

Draw a circle of radius 20 pixels at position x = 40, y = 20 (Figure 28).

Draw a white circle of radius 10 inside a black circle of radius 20 pixels at position x = 40, y = 20
(Figure 30).

For the exercise, you draw a target with a thick outer edge and a center in black.

Draw several circles of different radius on the same at position x = 40, y = 20 (Figure 29).

3.6. Drawing a circle or filled circle

Figure 27. Function for drawing a circle or filled circle

Figure 28.

Figure 30.

Figure 29.

9micro:bit AD BW - MakeCode programming - BASIC FUNCTIONS

10

In these examples, we use the RECTANGLE function to draw a rectangle in graphics mode. We need to
determine the position of the upper left corner (x, y), width (0-83) and height (0-47). Rectangle we can
draw in black or white color. If we want to delete an already drawn black rectangle, we need to draw, in
the same position, a white rectangle. A rectangle can only be drawn with lines or filled filled with.

Give it a try!

Draw a rectangle at position x = 5, y = 5 width 73 and height 37 pixels (Figure 32).

Draw a white rectangle width and height 18, inside a black rectangle width and height 40 pixels (Figure 34).

For the exercise, you draw a rectangle with an outer thick edge and a center
in black.

Draw several rectangles of different positions and sizes (Figure 33).

3.7. Drawing a rectangle

Figure 31. Rectangle drawing function

Figure 32.

Figure 34.

Figure 33.

micro:bit AD BW - MakeCode programming - BASIC FUNCTIONS

The PAINT function fills the screen with the bytes of the value entered in the color field.
The screen is filled with bytes that are laid vertically as in Figure 35.

Example of filling (coloring) the screen with lines spaced one pixel apart. Color value calculation (bytes)
you can see in Figure 36.

The screen can be set to "normal" mode (0) - white screen with black print, or in inverse (reverse) mode (1)
- black screen with white print. By default, the screen is set to "normal" mode (0). By change mode the
complete screen content is changed via the SCREEN MODE function. Try the following example in Figure 37.
You can supplement it with text.

11
3.8. Screen coloring - PAINT display

3.9. Display black/white or white/black - SCREEN MODE

Figure 35. Print screen memory bytes

Figure 36. Color calculation (bytes)

Figure 37. Example program for PAINT function

Figure 37. Example program for PAINT function

0

47
47

0

83

83
y

x

1

2

4

8

16

32

64

128

vrijednost = 1 + 4 + 16 + 64

vrijednost = 85

micro:bit AD BW - MakeCode programming - BASIC FUNCTIONS

12

Figure 40.

Figure 41.

Figure 42.

Function for drawing pixels on the screen in graphic mode.

3.10. Drawing pixel

Figure 39.

Draw one pixel to the screen in graphic mode, at position x = 20, y = 20.

Try the programs in previous figures 41 and 42.

micro:bit AD BW - MakeCode programming - BASIC FUNCTIONS

13

Figure 43. SCROLL function of the text UP

Figure 45. SCROLL function of text DOWN

Figure 44. Example of vertical text shift

Figure 46. Primjer vertikalnog pomaka teksta

4.1. Move text UP by one line

4.2. Move text DOWN by one line

4. PROGRAMMING - SHIFT FUNCTIONS - SCROLL

The text printed at the beginning is moved one line up, every half second (Figure 44). Shift
text can be used for all text sizes.

The LOOP function has two states, YES and NO. Try changing the state to NO.
What is the difference in text offset (YES)?

The text printed at the beginning scrolls down one line, every half second (Figure 46). Shift text can be used
for all text sizes.

The LOOP function has two states, YES and NO. Try changing the state to NO.
What is the difference in text offset (YES)?

micro:bit AD BW - MakeCode programming - ADVANCED FUNCTIONS

14

Figure 47. SCROLL function of the screen up

Figure 48. Example of moving the screen one pixel up

Figure 50. Example of moving the screen one pixel up

Figure 49. SCROLL function of the screen DOWN

4.3. Move the screen (images) up by one or more pixels (pixel line)

4.4. Move the screen (images) DOWN by one or more pixels (pixel line)

The text printed at the beginning moves one pixel line UP, every 200 milliseconds (Figure 48).
The screen offset (images) can be increased by entering a larger number in the for field.

The text printed at the beginning scrolls one line of pixels DOWN, every 200 milliseconds (Figure 50).
The screen offset (images) can be increased by entering a larger number in the for field.

micro:bit AD BW - MakeCode programming - ADVANCED FUNCTIONS

15

Figure 51.

Figure 52.

4.5. Horizontal screen shift (images) by one pixel

Function to move the screen horizontally (images) by one pixel. The function allows you to select the direction
of movement (LEFT - left or RIGHT - right), screen areas from line (text) to line or full screen (0-5).

As with text shift, the LOOP option can be turned on to move text or an image in a circle.

Example of moving the image to the right (Right) of two middle lines of text with a circular display (Figure 52).
Add lines to print the text in line 0 and 5, and change the SCROLL value to 2 in 0 and 3 in 5.

What change happened?

Try changing the direction of the shift.

micro:bit AD BW - MakeCode programming - ADVANCED FUNCTIONS

16

Figure 53.

4.5. Animation with scroll functions

Simple animation via various functions.

Try it!

micro:bit AD BW - MakeCode programming - ADVANCED FUNCTIONS

5. PROGRAMMING - GAME FUNCTIONS

17

5.1. LED light control

Figure 56.

Figure 57.

The interface has two built-in LED lights, one RED and one GREEN. RED is below the screen
on the left, and GREEN on the right.

An example of a program that alternately turns on RED and GREEN LED lights (Figure 57).

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

18
5.2. Creating BITMAPE objects

Figure 58.

Figure 59.

Creating graphic objects (BIT-maps or sprites) is performed in graphic mode (buffer - memory) for
faster printing on the screen and avoiding certain bad effects (flickering). Therefore, the first object (one or more
objects) are stored in a strong memory (buffer), and finally the memory is saved via the SHAW buffer function.
displayed on the screen.

After creating the object (BITMAP), in this example CUSTOM 1, it is necessary to determine the position at
which to draw the object and in which COLOR (DRAW BITMAP). A brief example with basic functions is shown
in Figure 58.

The print color allows us to print the object in BLACK and delete it in WHITE.

Complete the previous program shown in Figure 58 with the forever block shown in Figure 59.

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

5.3. PlAYER object

5.4. Horizontal displacement controls

19

Figure 61.

Figure 62.

If we want BITMAP to be a player object in the menu we need to select Player. After creating the object
it is necessary to run the function to display it on the screen. Text mode resolution is used for positioning
(14 x 6). In the following example, the player object is plotted at position x = 5, y = 3.

The PLAYER function also displays the BUFFER status on the screen, so it is not necessary
calling the SHOW BUFFER function.

In the previous program, add the forever block shown in Figure 62.

Test how the program works if you change the values for direction and for (pixel) with the BUTTON function.

20

Figure 63.

Figure 64.

To animate a player object required is another
bitmap. Complete the program according to
Figure 64. By moving the player object they are
alternately drawn on the screen bitmap Player
and Player animation frame.

To control the player object in all directions it is necessary to add and control the touch sensors that are
located on the underside of the micro:bit. The analog reading of the touch sensors is not the same as the
connected USB cable to micro:bit even when not connected. The example in Figure 63 shows the values
with USB connected cable. The value without a USB cable connected to the micro:bit is <100.

5.5. Vertical controls (touch sensors)

5.6. Animation of a player object

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

21

Figure 65.

Figure 66.

Figure 67.

Complete the program start block with the animation speed control function according to Figure 65.
Try different speed values.

Fill the program with a new object (Custom 1). Draw it on the screen (DRAW BITMAP) several times, on
different positions according to Figure 67 or arbitrarily. Complete the program with the COLLISION function.

Try the difference with the included
with the COLLISION function (Yes) and off
(No).

What happens to objects on occasion
moving the player object towards them?

We have the basic construction of the game with the control of the player's object movement. We need to
put a message at the beginning which will be printed after the program starts. Standard message display
function (GAME: START message) insert into the start block as shown in Figure 66. After printing, the
function needs to be started pause so that the message can be read, and then clear the screen with the
CLEAR SCREEN function. If we do not run the screen clear function, the player object will be drawn over
the start text.

Animation of a player's object can be faster or slower. We use the ANIMATION function to control the
speed (player) speed. If we want the animation (bitmap change) to be slower, we need to enter a larger
one value in the speed field. The animation is performed only while the player's object is in motion.

5.7. Animation speed control

5.8. START game

5.9. COLLISION function

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

22

Figure 68.

In order for the movement of the player's object to be as natural as possible, and for him to be able to jump
and fall, it is necessary to include him in the game gravity function - GRAVITY (Fig. 68 rounded).

We only use horizontal controls to control the
player’s object. We removed the vertical ones
from the program.

The complete program is shown in Figure 68.

What is the difference in the movement of the
player's object with on by gravity and off?

5.10. GRAVITY

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

23

Figure 69.

Figure 70.

Figure 71.

We took part of the previous program (Figure 68) and added commands to create objects (Figure 69). It's
the first it is necessary to define the objects that will be drawn on the screen via the OBJECT command. All
commands are grouped to the «screens» that are displayed on the screen via the SHOW SCREEN
command. In this example we define «screen» 1 with two objects. Both objects are composed of the same
bitmap (custom1). For positioning it is necessary to determine the x and y position of the initial bitmap of the
object. The length (number of repetitions) is determined by the entry values in the length field. The
maximum horizontal length is 11 (84/8 = 10.5 bitmaps).

To read the bitmap vertically, it is necessary to change the value of the "hor/ver" field to 1.

In the previous program (Figure 69) make changes to the values according to Figure 70.
Try the program.

Try the combination of functions according to Figure 71.
Don’t forget the SHOW SCREEN command (1) that comes at the end.

Objects longer than one bitmap (8x8 pixels) can be placed horizontally or vertically.
Objects are created by repeating the same bitmap several times. Objects through which points are
earned or lost lives are usually the length of a bitmap, if they are longer, only the first position is
active to obtain points or loss of life.

5.11. Creating objects (horizontal and vertical) - max. 20 objects

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

24

Figure 73.

Figure 72.

The example in Figure 73 uses two “screens” that can be alternately displayed via the A or B key.

If we want to create more different "screens", it is necessary to create objects for each "screen". The
following example is with two "screens" and three objects.

When you want to create more "screens" it is good to make a sketch as shown in the example in Figure
72. Screens can be sketched using a spreadsheet in Excel or raster paper. This makes it much easier to
visualize all screens, especially if horizontal and vertical objects are used.

5.12. Creating more than one "screen" - max. 5 "screens"

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

25

Figure 74.

Figure 75.

Figure 76.

When creating a platform game, we use mobile platforms that move from one side of the screen to the
other. To run the platforms (objects) we created in the previous program (Figure 73) we need to add the
GAME SCROLL horizontal (yes) command is activated (Figure 74). Objects on "screens" are printed
on screen in a circular order of "screen" numbers (1,2,1,2,1,2, ...)

5.13. Sliding "screens" - display a screen with a horizontal scroll

The horizontal movement speed of objects can be changed with the GAME SPEED command (Figure 75).
Smaller the value of the variable means a higher rate of shift. Maximum speed is limited to 10, and default
is set to 100 (0 = 10). We can also increase the speed by shifting by 2 pixels (default 1), but shift more it
won’t be as ‘fine’ as a 1 pixel offset. If the program contains a lot of control objects, when the maximum
speed (10) may stop working. In that case you need to reduce the speed because the program does
not manage to process all operations in too short a time.

To see what the differences are in the feed rate try a program with different speed values. You can expand
the program to another "screen" (3).

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

26

Figure 77.

Figure 78.

The jump of the ’’player’’ directly upwards is controlled by the JUMP UP function, which is most often used
in code platform games where the player is in the same position on the screen (horizontally). The jump
height is determined in pixels. In order for the function to be active we had to add some more mandatory
position and control functions movements of the player's object (COLLISION, GRAVITY, PLAYER start
position).

5.14. Movement the player object at the scroll screen

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

27

Figure 79.

Figure 80.

Figure 81.

Figure 82.

Figure 83.

We use the JUMP function to jump players to the right (+) or left (-) side. In addition to the height of the
jump, as and with the JUMP UP command, we determine which way the player will move + = right or
- = left when jumping. By entering values from 0 to 5 we determine the jump angle. For a vertical jump (in
place) the value is 0, for a jump at a 45 degree angle the value (length) is 1. Values 2 - 5 increase the
jump angle (length).

To the previous program (Figure 78), change the button A function and add the button B function according
to the figure below (Figure 80).

5.15. Control functions

In order for a program running in micro: bit to be able to perform some functions it is
necessary read certain values used in the game. Game status is used for performance
sound effects during the game and to know when the game is over. The function is
called ONLY ONCE at the beginning of the forever loop.

To perform certain sound and light effects associated with a particular event in In the
game (point, loss of life, fall) we use the GAME: all sounds function. Mandatory
previously run the GET GAME status function.

In order for the program to end the game with a message, you need to turn on the
GAME: END message function. It is mandatory to run the GET GAME status
function beforehand.

5.15.1. Game status - GET GAME status

5.15.2. Sound and light effects - GAME: all sounds.

5.15.3. Message for the end of the game - GAME: END message.

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

28

Figure 84.

Figure 85.

Figure 86.

To track the number of points won in the game, it is necessary to run the POINTS at
start function with the starting number of points. In a game where we can only win
plus points usually the starting value is 0. In a game with the possibility of winning
and losing points, the initial value is greater than zero. In order for a player to get
points, it is necessary to play include Points (+) objects.

To lose a life, in the game, it is necessary to run the LIVES at start function that sets
the initial value of the number of lives in the game. Loss of life occurs when falling
(FALL) or touching the Lives (-) object.

The game consists of platforms on which the player moves. When falling, the
player's object can lose a life or just reappear in the starting position. By turning on
the function FALL includes loss of life when falling off the screen.

5.15.4. Points - POINTS at start

5.15.5. Lives - LIVES at start

5.15.6. Fall loss of life - FALL

Figure 87.

Figure 88.

Figure 89.

To define the duration of the game in seconds, it is necessary to turn on the GAME
DURATION function. We use the function in games where the goal is to collect as
many points as possible equal time limit. In such games, the points-only function is
used.

If you want to enable point subtraction, you need to enable the POINTS negative
function. In order for this function to be active, it is necessary to activate the LIVES
at start function.

If the game has MORE THAN TWO "screens", to avoid repeated repetition of the
same order we can turn on this feature. The random function creates a sequence
screen display.

5.15.7. Limited game duration - GAME DURATION

5.15.8. Negative points - POINTS negative

5.15.9. Display the “screen” by random selection - RANDOM displays flow

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

29
5.16. Complete platform game

To make the game complete, we added to each "screen" objects for gaining points () and losing lives
 () according to the positions on the sketch (Figure 90), and the player animation object.

Figure 90.

(continuation of the program on the next page)

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

30

Figure 92.

During program creation and changing object definitions it can happen, that some
objects that you delete from the program remain stored in the interface memory. In
that In this case, ‘phantom’ objects that you have deleted from the program may
appear on the screen. To avoid this, you can add the DELETE past objects function
at the beginning of the program objects.

This function can be removed from the program after the program is completed.

5.16.1. Erasing data from memory - DELETE past objects

Figure 93.

Figure 94.

To make the game more demanding we can add more weight new ones. The higher
the level, the higher the speed of the game and therefore harder to finish. With
automatic function control we can determine the values that determine the levels of
the game. At the beginning (speed max.) enter the value that defines the maximum
game speed (last level). After the starting speed at which we start the game. By
how much it increases the speed of the game by moving to a higher level is entered
in the field change for. Last value (points for new level) determines how many
points it takes to get to higher level.

This feature may not support all game forms.

Delete the GAME SPEED function from the previous program and add AUTO
LEVELS function with the values from the example in Figure 93.

At the beginning of the program, when a lot of data is sent to define different
functions and objects need to be set COM FACTOR to 8 (initial value) or more.
That way, the AD interface program has enough time to process all the data.
If the time is too short (speed too high), the program will not be able to process
everything data sent to it by micro: bit and some objects will be missing or some
will not work functions, or the program will stop working. Ako želite da se radnje
(nakon dijela programa koji šalje postavke za objekte i funkcije) odvijaju brže, te
da igra bude što brža, možete COM FACTOR postaviti na 4 (najmanja preporučena
vrijednost, za najveću brzinu).

A value less than 4 is not recommended (Python, JavaScript).

The AD interface program allows you to try with my values as well.

5.16.2. Automatic level control (levels) of the game - AUTO LEVELS

5.16.3. Data exchange rate (micro:bit <-> AD display) - SET COM FACTOR

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

31

Figure 91.

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

32

6.1. METEORS

6. EXAMPLE OF THE PROGRAM

The program includes some of the functions described on page 28. The game has three "screens" that
are displayed in random order using the RANDOM function (5.15.9) and is limited to 30 seconds by the
function GAME DURATION (5.15.7.). A sketch of the layout of the objects is shown in the figure below
(Figure 95).

If you want to make it harder to score points you can add more objects that will only make it harder for the
player to move, as well which is shown in Figure 96.

Figure 95.

Figure 96.

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

33

you can increase the program speed if you set the COM FACTOR to 6 or 4, if
the game does not contain too many objects. (try which speed is right for your
program)

(continuation of the program on the next page)

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

34

game time limited to 30 seconds

number of lives at the beginning of the game = 5

number of points at the beginning of the game = 0

the starting position of the player object

game speed and shift

show first «screen»

selecting the “screen” display by randomly selecting the order

player control along the y axis down (+)

player control along the y axis up (-)

Figure 97.

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

35

7.1. OTHER FUNCTIONS

Figure 98.

Figure 99.

Through this function you can retrieve the value for the horizontal (x) position of the
player at screen. The value shows the graphical position of the player (0-83).
You can do this function use in any combination when creating a program.

Through this function you can take the value for the vertical (y) position of the
player on screen. The value shows the graphical position of the player (0-47).
You can do this function use in any combination when creating a program.

7.1.1. Taking the position of a player - GAME get player position (x)

7.1.2. Taking the position of a player - GAME get player position (y)

7.2. Example program

7. EXAMPLE OF THE PROGRAM

(continuation of the program on the next page)

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

36

Figure 100.

Figure 101.

In this example, we use the player position download functions just to display on the screen. Same
functions you can use it to control the player or restrict his movement on the screen.

Example of restricting the horizontal movement of players (Figure 101).
In the previous program (Figure 100), make the change according to the example in Figure 101.

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

37

We wanted to create a screen interface that would allow you to display data or
create simple games. When creating a game, some functions are used to define
the operation of the game, which we also have in real computer games (gravity).
To allow for maximum creativity most functions have no limited value, which means
they will happen errors such as program shutdown or printing of incorrect data on
the screen.

We used an electronic translator to translate into English, because we wanted to
complete these instructions as soon as possible.

We wish you a pleasant work.

8. CONCLUSION

micro:bit AD BW - MakeCode programming - GAME FUNCTIONS

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38

